AWS Cloud Development Kit

— a perfect laC tool of choice for serverless?

Ari Palo

AWS ,
community

builder

.5,(1

AWS Community Builder

Developer Tooling

¥ .
& Serverlesss since

& Lead Technologist

® at Alma Media

& twitter.com/

& linkedin.com/in/

adWs

certified

Developer

Associate

awse N 7 awss N\

certified | | certified
Solutions | DevOps
Architect Engineer

Professional : Professional

adWws dWs

certified

Solutions
Architect

Associate

adWws

certified

Security

Specialty

certified
SysOps
Administrator

Associate

10+

European countries

Tekniikka o)

5O+

1500

Employees

300

Developers

2012

Started using
AVUTASS

AWS Accounts
in the organization

>1000

Million APl Gateway
Requests / Month

2016

Started using
Serverless

<1000

Million Lambda
Invocations / Month

wlele

Million AppSync
Requests / Month

The Journey to Serverless-
First: Enterprise Stories

D0
P
[Blir =iz

Real World Serverless with
theburningmonk

#23: Serverless at Aima

Serverless & Infrastructure-as-Code

Serverless & Infrastructure-as-Code

& AWS CDK

3;\—3 AWS CloudFormation

Terraform

& AWS CDK

"AWS Cloud Development Kit (CDK) is an open source software
development framework to define your cloud application resources
using familiar programming languages.”

& AWS CDK

"AWS Cloud Development Kit (CDK) is an open source software
development framework to define your cloud application resources
using familiar programming languages.”

aripalo.com/
aws-community-nordics-cdk-special/

impont * as cdk §rom "@aws-cdk/core";

impont as sns grnom "@aws-cdk/aws-sns";

impont * as subscriptions §zom "@aws-cdk/aws-sns-subscriptions"”;
impont * as dynamodb §7om "@aws-cdk/aws-dynamodb";

impont * a4 lambda §7om "@aws-cdk/aws-lambda”;

expont class NotificationToDynamoStack extends cdk.Stack {
public readonly topic: sns.ITopic;

constructor(»: cdk.App, : string, ?: cdk.StackProps) {
(scope, id, props);

const topic new sns.Topic(this, "MyTopic");

const table = new dynamodb.Table(this, "MyTable", §{
partitionKey: { name: "PK", type: dynamodb.AttributeType.STRING %,
;

const fn = new lambda.Function(, "MyFunction", {
runtime: lambda.Runtime.NODEJS_12 X,
handler: "index.handler",
code: lambda.Code.fromAsset("./my-function"),
memorySize: 1624,
environment: §
TABLE_NAME: table.tableName,
3,
3;

topic.addSubscription(new subscriptions.LambdaSubscription(£fn));

table.grantWriteData(fn);

s.topic = topic;

vie H‘H =

SNS
Topic

Lambda
Function

DynamoDB
Table

impont * as cdk §rom "@aws-cdk/core";

impont as sns grnom "@aws-cdk/aws-sns";

impont * as subscriptions §zom "@aws-cdk/aws-sns-subscriptions"”;
impont * as dynamodb §7om "@aws-cdk/aws-dynamodb";

impont * a4 lambda §7om "@aws-cdk/aws-lambda”;

expont class NotificationToDynamoStack extends cdk.Stack {
public readonly topic: sns.ITopic;

constructor(»: cdk.App, : string, ?: cdk.StackProps) {
(scope, id, props);

const topic new sns.Topic(this, "MyTopic");

const table = new dynamodb.Table(this, "MyTable", §{
partitionKey: { name: "PK", type: dynamodb.AttributeType.STRING %,
;

const fn = new lambda.Function(, "MyFunction", {
runtime: lambda.Runtime.NODEJS_12 X,
handler: "index.handler",
code: lambda.Code.fromAsset("./my-function"),
memorySize: 1624,
environment: §
TABLE_NAME: table.tableName,
3,
3;

topic.addSubscription(new subscriptions.LambdaSubscription(£fn));

table.grantWriteData(fn);

s.topic = topic;

impont cdk gnom "@aws-cdk/core”;

impont sns grnom "@aws-cdk/aws-sns";

impont subscriptions §7om "@aws-cdk/aws-sns-subscriptions”;
impont dynamodb ¢7om "@aws-cdk/aws-dynamodb";

imnont lambda #€7om "@Raws-cdk/aws-1ambda -

expont class NotificationToDynamoStack extends cdk.Stack {

public readonly topic: sns.ITopic;

constructor(»: cdk.App, : string, ?: cdk.StackProps) {
(scope, id, props);

const topic new sns.Topic(this, "MyTopic");

const table = new dynamodb.Table(this, "MyTable", §{
partitionKey: { name: "PK", type: dynamodb.AttributeType.STRING %,
;

const fn = new lambda.Function(, "MyFunction", {
runtime: lambda.Runtime.NODEJS_12 X,
handler: "index.handler",
code: lambda.Code.fromAsset("./my-function"),
memorySize: 1624,
environment: §
TABLE_NAME: table.tableName,

ity
3;

topic.addSubscription(new subscriptions.LambdaSubscription(£fn));

table.grantWriteData(fn);

s.topic = topic;

impont * as cdk §rom "@aws-cdk/core";

impont as sns grnom "@aws-cdk/aws-sns";

impont * as subscriptions §zom "@aws-cdk/aws-sns-subscriptions"”;
impont * as dynamodb §7om "@aws-cdk/aws-dynamodb";

impont * a4 lambda §7om "@aws-cdk/aws-lambda”;

expont class NotificationToDynamoStack extends cdk.Stack {
public readonly topic: sns.ITopic;

constructor(»: cdk.App, : string, ?: cdk.StackProps) {
(scope, id, props);

const topic new sns.Topic(this, "MyTopic");

const table = new dynamodb.Table(this, "MyTable", §{
partitionKey: { name: "PK", type: dynamodb.AttributeType.STRING %,
;

const fn = new lambda.Function(, "MyFunction", {
runtime: lambda.Runtime.NODEJS_12 X,
handler: "index.handler",
code: lambda.Code.fromAsset("./my-function"),
memorySize: 1624,
environment: §
TABLE_NAME: table.tableName,
3,
3;

topic.addSubscription(new subscriptions.LambdaSubscription(£fn));

table.grantWriteData(fn);

s.topic = topic;

DynamoDB
Table

impont * as cdk §rom "@aws-cdk/core";

impont as sns grnom "@aws-cdk/aws-sns";

impont * as subscriptions §zom "@aws-cdk/aws-sns-subscriptions"”;
impont * as dynamodb §7om "@aws-cdk/aws-dynamodb";

impont * a4 lambda §7om "@aws-cdk/aws-lambda”;

expont class NotificationToDynamoStack extends cdk.Stack {
public readonly topic: sns.ITopic;

constructor(»: cdk.App, : string, ?: cdk.StackProps) {
(scope, id, props);

const topic new sns.Topic(this, "MyTopic");

const table = new dynamodb.Table(this, "MyTable", §{
partitionKey: { name: "PK", type: dynamodb.AttributeType.STRING %,
D;

const fn = new lambda.Function(, "MyFunction", {
runtime: lambda.Runtime.NODEJS_12 X,
handler: "index.handler",
code: lambda.Code.fromAsset("./my-function"),
memorySize: 1624,
environment: §
TABLE_NAME: table.tableName,
3,
3;

topic.addSubscription(new subscriptions.LambdaSubscription(£fn));

table.grantWriteData(fn);

s.topic = topic;

Lambda
Function

impont
impont
impont
impont
impont
expont

publ

cons

co

CcO

3

as cdk gnom "@aws-cdk/core";

as sns grnom "@aws-cdk/aws-sns";

as subscriptions gzom "@aws-cdk/aws-sns-subscriptions”;
as dynamodb g7om "@aws-cdk/aws-dynamodb";

as lambda §7om "@aws-cdk/aws-lambda";

class NotificationToDynamoStack extends cdk.Stack {

ic readonly topic: sns.ITopic;

tructor(scope: cdk.App, id: string, ps?: cdk.StackProps) {
(scope, id, props);

nst topic new sns.Topic(this, "MyTopic");

nst table = new dynamodb.Table(this, "MyTable", §{
partitionKey: { name: "PK", type: dynamodb.AttributeType.STRING %,

co

D)

nst fn = new lambda.Function(s, "MyFunction”, ;\\
runtime: lambda.Runtime.NODEJS_12 X,
handler: "index.handler",
code: lambda.Code.fromAsset("./my-function"),
memorySize: 1624,
environment: §

TABLE_NAME: table.tableName,

. J

to

ta

pic.addsubscription(new subscriptions.LambdaSubscription(fn));

ble.grantWriteData(fn);

s.topic = topic;

Subscribe Lambda to

impont
impont
impont
impont
impont
expont

publ

cons

co

CcO

3

co

3;

as cdk gnom "@aws-cdk/core";

as sns grnom "@aws-cdk/aws-sns";

as subscriptions gzom "@aws-cdk/aws-sns-subscriptions”;
as dynamodb g7om "@aws-cdk/aws-dynamodb";

as lambda §7om "@aws-cdk/aws-lambda";

class NotificationToDynamoStack extends cdk.Stack {
ic readonly topic: sns.ITopic;

tructor(scope: cdk.App, id: string,)s?: cdk.StackProps) {
(scope, id, props);

nst topic new sns.Topic(this, "MyTopic");

nst table = new dynamodb.Table(this, "MyTable", §{
partitionKey: { name: "PK", type: dynamodb.AttributeType.STRING %,

nst fn = new lambda.Function(s, "MyFunction", {
runtime: lambda.Runtime.NODEJS_12 X,
handler: "index.handler",
code: lambda.Code.fromAsset("./my-function"),
memorySize: 1624,
environment: §
TABLE_NAME: table.tableName,
3,

to

pic.addsubscription(new subscriptions.LambdaSubscription(fn));

ta

ble.grantWriteData(fn);

s.topic = topic;

Grant write access for Lambda into

impont
impont
impont
impont
impont
expont

publ

cons

co

CcO

3

co

3;

to

as cdk gnom "@aws-cdk/core";

as sns grnom "@aws-cdk/aws-sns";

as subscriptions gzom "@aws-cdk/aws-sns-subscriptions”;
as dynamodb g7om "@aws-cdk/aws-dynamodb";

as lambda §7om "@aws-cdk/aws-lambda";

class NotificationToDynamoStack extends cdk.Stack {
ic readonly topic: sns.ITopic;

tructor(scope: cdk.App, id: string,)s?: cdk.StackProps) {
(scope, id, props);

nst topic new sns.Topic(this, "MyTopic");

nst table = new dynamodb.Table(this, "MyTable", §{
partitionKey: { name: "PK", type: dynamodb.AttributeType.STRING %,

nst fn = new lambda.Function(s, "MyFunction", {
runtime: lambda.Runtime.NODEJS_12 X,
handler: "index.handler",
code: lambda.Code.fromAsset("./my-function"),
memorySize: 1624,
environment: §
TABLE_NAME: table.tableName,
3,

pic.addsubscription(new subscriptions.LambdaSubscription(fn));

ta

ble.grantWriteData(fn);

s.topic = topic;

impont * as cdk §rom "@aws-cdk/core";

impont * as sns §rnom "@aws-cdk/aws-sns";

impont * as subscriptions §zom "@aws-cdk/aws-sns-subscriptions"”;
impont * as dynamodb §7om "@aws-cdk/aws-dynamodb";

impont * a4 lambda §7om "@aws-cdk/aws-lambda”;

expont class NotificationToDynamoStack extends cdk.Stack {

public readonly topic: sns.ITopic;

constructor(scope: cdk.App, id: string,)s?: cdk.StackProps) {
(scope, id, props);

const topic new sns.Topic(this, "MyTopic");

const table = new dynamodb.Table(this, "MyTable", §{
partitionKey: { name: "PK", type: dynamodb.AttributeType.STRING %,
;

const fn = new lambda.Function(s, "MyFunction", {
runtime: lambda.Runtime.NODEJS_12 X,
handler: "index.handler",
code: lambda.Code.fromAsset("./my-function"),
memorySize: 1624,
environment: §
TABLE_NAME: table.tableName,
3,
3;

topic.addSubscription(new subscriptions.LambdaSubscription(£fn));

table.grantWriteData(fn);

Expose the outside of the so other Stacks may use it RS G

vie H‘H =

SNS
Topic

Lambda
Function

DynamoDB
Table

impont * as cdk §rom "@aws-cdk/core";

impont as sns grnom "@aws-cdk/aws-sns";

impont * as subscriptions §zom "@aws-cdk/aws-sns-subscriptions"”;
impont * as dynamodb §7om "@aws-cdk/aws-dynamodb";

impont * a4 lambda §7om "@aws-cdk/aws-lambda”;

expont class NotificationToDynamoStack extends cdk.Stack {
public readonly topic: sns.ITopic;

constructor(»: cdk.App, : string, ?: cdk.StackProps) {
(scope, id, props);

const topic new sns.Topic(this, "MyTopic");

const table = new dynamodb.Table(this, "MyTable", §{
partitionKey: { name: "PK", type: dynamodb.AttributeType.STRING %,
;

const fn = new lambda.Function(, "MyFunction", {
runtime: lambda.Runtime.NODEJS_12 X,
handler: "index.handler",
code: lambda.Code.fromAsset("./my-function"),
memorySize: 1624,
environment: §
TABLE_NAME: table.tableName,
3,
3;

topic.addSubscription(new subscriptions.LambdaSubscription(£fn));

table.grantWriteData(fn);

s.topic = topic;

E Constructs

vie HH =

SNS Lambda DynamoDB
Topic Function Table

impont * as cdk §rom "@aws-cdk/core";

impont as sns grnom "@aws-cdk/aws-sns";

impont * as subscriptions §zom "@aws-cdk/aws-sns-subscriptions"”;
impont * as dynamodb §7om "@aws-cdk/aws-dynamodb";

impont * a4 lambda §7om "@aws-cdk/aws-lambda”;

expont class NotificationToDynamoStack extends cdk.Stack {
public readonly topic: sns.ITopic;

constructor(»: cdk.App, : string, ?: cdk.StackProps) {
(scope, id, props);

const topic new sns.Topic(this, "MyTopic");

const table = new dynamodb.Table(this, "MyTable", §{
partitionKey: { name: "PK", type: dynamodb.AttributeType.STRING %,
;

const fn = new lambda.Function(, "MyFunction", {
runtime: lambda.Runtime.NODEJS_12 X,
handler: "index.handler",
code: lambda.Code.fromAsset("./my-function"),
memorySize: 1624,
environment: §
TABLE_NAME: table.tableName,
3,
3;

topic.addSubscription(new subscriptions.LambdaSubscription(£fn));

table.grantWriteData(fn);

s.topic = topic;

impont * as cdk §rom "@aws-cdk/core";

impont as sns grnom "@aws-cdk/aws-sns";

impont * as subscriptions §zom "@aws-cdk/aws-sns-subscriptions"”;
impont * as dynamodb §7om "@aws-cdk/aws-dynamodb";

impont * a4 lambda §7om "@aws-cdk/aws-lambda”;

expont class NotificationToDynamoStack extends cdk.Stack {

public readonly topic: sns.ITopic;

constructor(»: cdk.App, : string, ?: cdk.StackProps) {
(scope, id, props);

const topic new sns.Topic(this, "MyTopic");
Constructs

const table = new dynamodb.Table(this, "MyTable", §{
partitionKey: { name: "PK", type: dynamodb.AttributeType.STRING %,

;
~)
; ; g : .
const fn = new lambda.Function(, "MyFunction", {
runtime: lambda.Runtime.NODEJS_12 X,

handler: "index.handler",
code: lambda.Code.fromAsset("./my-function"),
SNS Lambda DynamoDB memorysize: 162L,
. . environment: §
TOpIC FUnCthn Table TABLE_NAME: table.tableName,
3,
3;

topic.addSubscription(new subscriptions.LambdaSubscription(£fn));

table.grantWriteData(fn);

s.topic = topic;

impont * as cdk §rom "@aws-cdk/core";

impont as sns grnom "@aws-cdk/aws-sns";

impont * as subscriptions §zom "@aws-cdk/aws-sns-subscriptions"”;
impont * as dynamodb §7om "@aws-cdk/aws-dynamodb";

impont * a4 lambda §7om "@aws-cdk/aws-lambda”;

CDK Application expont class NotificationToDynamoStack extends cdk.Stack {

public readonly topic: sns.ITopic;

constructor(»: cdk.App, : string, ?: cdk.StackProps) {
(scope, id, props);

const topic new sns.Topic(this, "MyTopic");
Constructs

const table = new dynamodb.Table(this, "MyTable", §{
partitionKey: { name: "PK", type: dynamodb.AttributeType.STRING %,

;
~)
; ; g : .
const fn = new lambda.Function(, "MyFunction", {
runtime: lambda.Runtime.NODEJS_12 X,

handler: "index.handler",
code: lambda.Code.fromAsset("./my-function"),
SNS Lambda DynamoDB memorysize: 162L,
. . environment: §
TOpIC FUnCthn Table TABLE_NAME: table.tableName,
3,
3;

topic.addSubscription(new subscriptions.LambdaSubscription(£fn));

table.grantWriteData(fn);

s.topic = topic;

impont * as cdk §rom "@aws-cdk/core";

impont as sns grnom "@aws-cdk/aws-sns";

impont * as subscriptions §zom "@aws-cdk/aws-sns-subscriptions"”;
impont * as dynamodb §7om "@aws-cdk/aws-dynamodb";

impont * a4 lambda §7om "@aws-cdk/aws-lambda”;

CDK Application expont class NotificationToDynamoStack extends cdk.Stack {

public readonly topic: sns.ITopic;

constructor(»: cdk.App, : string, ?: cdk.StackProps) {
(scope, id, props);

const topic new sns.Topic(this, "MyTopic");
Constructs

const table = new dynamodb.Table(this, "MyTable", §{
partitionKey: { name: "PK", type: dynamodb.AttributeType.STRING %,

;
~)
; ; g : .
const fn = new lambda.Function(, "MyFunction", {
runtime: lambda.Runtime.NODEJS_12 X,

handler: "index.handler",
code: lambda.Code.fromAsset("./my-function"),
SNS Lambda DynamoDB memorysize: 162L,
. . environment: §
TOpIC FUnCthn Table TABLE_NAME: table.tableName,
3,
3;

topic.addSubscription(new subscriptions.LambdaSubscription(£fn));

table.grantWriteData(fn);

s.topic = topic;

CDK Application

E Constructs

@08

SIS Lambda DynamoDB
Topic Function Table

CDK Application
—
Stack

E Constructs executes (\‘P

G bV =

SIS Lambda DynamoDB

Topic Function Table CDK CLI
npx cdk <command>

CDK Application

—
Stack

E Constructs
&0 B

SIS Lambda DynamoDB
Topic Function Table

executes (\‘j synthesize

CDK CLI
npx cdk <command>

Cloud Assembly

CDK Application

—
Stack

E Constructs
&0 B

SIS Lambda DynamoDB
Topic Function Table

executes (\‘j synthesize

CDK CLI
npx cdk <command>

Cloud Assembly

CDK Application

—
Stack

E Constructs
&0 B

SIS Lambda DynamoDB
Topic Function Table

executes (\‘j synthesize

CDK CLI
npx cdk <command>

Cloud Assembly

CDK Application

—
Stack

E Constructs
&N

SIS Lambda DynamoDB
Topic Function Table

executes (\‘j synthesize

CDK CLI
npx cdk <command>

Cloud Assembly

CDK Application

E Constructs
&0 B

SIS Lambda DynamoDB
Topic Function Table

executes (\‘j synthesize

CDK CLI
npx cdk <command>

Cloud Assembly

> E

Toolkit bucket
(assets)

CDK Application

E Constructs
&0 B

SIS Lambda DynamoDB
Topic Function Table

executes (\‘j synthesize

CDK CLI
npx cdk <command>

Cloud Assembly

o\ Toolkit bucket
E‘ (assets)

CloudFormation
Service

CDK Application

E Constructs
&0 B

SIS Lambda DynamoDB
Topic Function Table

executes (\‘j synthesize

CDK CLI
npx cdk <command>

Cloud Assembly

o\ Toolkit bucket
E‘ (assets)

CloudFormation
Service

&

CDK CLI
npx cdk <command>

* Functions-as-a-Service (FaaS): AWS Lambda

* Functions-as-a-Service (FaaS): AWS Lambda

* APl Management: AWS API Gateway & AppSync

Functions-as-a-Service (FaaS): AWS Lambda

APl Management: AWS API Gateway & AppSync

Event Delivery: AWS SNS, EventBridge, Kinesis...

Message Queues: AWS SQS

Functions-as-a-Service (FaaS): AWS Lambda

APl Management: AWS API Gateway & AppSync

Event Delivery: AWS SNS, EventBridge, Kinesis...

Message Queues: AWS SQS

Databases: AWS DynamoDB, QLDB, Aurora Serverless...

Functions-as-a-Service (FaaS): AWS Lambda
APl Management: AWS API Gateway & AppSync
Event Delivery: AWS SNS, EventBridge, Kinesis...

Message Queues: AWS SQS

Databases: AWS DynamoDB, QLDB, Aurora Serverless...

Object Storage: AWS S3

Functions-as-a-Service (FaaS): AWS Lambda

APl Management: AWS AP| Gateway & AppSync

Event Delivery: AWS SNS, EventBridge, Kinesis...
Message Queues: AWS SQS

Databases: AWS DynamoDB, QLDB, Aurora Serverless...
Object Storage: AWS S3

Orchestration: AWS Step Functions

Config Management: Parameter Store, Secrets Manager...

Functions-as-a-Service (FaaS): AWS Lambda

APl Management: AWS AP| Gateway & AppSync

Event Delivery: AWS SNS, EventBridge, Kinesis...
Message Queues: AWS SQS

Databases: AWS DynamoDB, QLDB, Aurora Serverless...
Object Storage: AWS S3

Orchestration: AWS Step Functions

Config Management: Parameter Store, Secrets Manager...

Serverless Containers: AWS Fargate

Functions-as-a-Service (FaaS): AWS Lambda

APl Management: AWS AP| Gateway & AppSync

Event Delivery: AWS SNS, EventBridge, Kinesis...
Message Queues: AWS SQS

Databases: AWS DynamoDB, QLDB, Aurora Serverless...
Object Storage: AWS S3

Orchestration: AWS Step Functions

Config Management: Parameter Store, Secrets Manager...

Serverless Containers: AWS Fargate

... .e. any AWS Service that doesn’t require self-managing EC2!

Where’s your business logic? In Lambda functions?

?

@

Where's your business logic? In AWS Services?

297

@

?

SO —

3

Your infrastructure is your business logic!

@

You could even go “functionless”...

Ben Kehoe

This is an important point when we talk about "just write business logic"
and people say "all the infrastructure should be taken care of for you". The
properties of your system are business logic, and they have real
implications that involve ownership.

Q Ben Kehoe

The presence or absence of an SQS queue in your architecture is
business logic.

g Ben Kehoe

This is why | don't like the term "infrastructure”,
because it's not "infra"—below—Ilike it used to be. It
is your application. | prefer to talk about "resources”
and your "resource graph".

Your infrastructure is your business logic!

‘-

Your infrastructure is your business logic!

& Treat it as such!

... you probably wouldn’t write your
business logic as (tens of) thousands of
ines of YAML...?

Your infrastructure is your business logic!

& Treat it as you would “any other code”!

Use best practices & good software development patterns

Utilize dependency management tools

Let type systems & editor/IDE intellisense support you
Use static analysis tools (linters)

Write tests

Perform Code Reviews

Define your domain-specific rules/patterns

impont { Stack ¥ §znom '@aws-cdk/core’;

- - inpont '@aws-cdk/assert/jest’;
U n It testl n g C D K COd e igzz:lz; {@::iirc\gLii:S;rg"xZ;S?@aws-cdk/assert' -

impont { DeadLetterQueue % gznom './demo-dlq';

test('dlg creates an alarm’', () => {
const stack = new Stack();

new DeadLetterQueue(stack, 'DLQ');

expect(stack).toHaveResource('AWS: :CloudWatch::Alarm', {
MetricName: "ApproximateNumberOfMessagesvVisible",
Namespace: "AWS/SQS",
Dimensions: [
3
Name: "QueueName",
Value: { "Fn::GetAtt": [stringLike("DLQ*"), "QueueName"] 3}

3

@aws-cdk/assertions
(screenshots still from @aws-cdk/assert)],

B;
B

v test('dlq has maximum retention period', () => {
const stack = new Stack();

new DeadLetterQueue(stack, 'DLQ');

v expect(stack).toHaveResource('AWS::SQS: :Queue’, {
MessageRetentionPeriod: 12096600
B;
3;

impont { Stack ¥ §znom '@aws-cdk/core’;

impont '@aws-cdk/assert/jest’;

impont { stringlLike ¥ §zom '@aws-cdk/assert’;
impont { DeadLetterQueue % gznom './demo-dlq';

///"> test('dlg creates an alarm’', () => { ‘\\\\
const stack = new Stack();

new DeadLetterQueue(stack, 'DLQ');

Expect DLQ to expect(stack).toHaveResource('AWS: :CloudWatch::Alarm', {
define a MetricName: "ApproximateNumberOfMessagesVisible",
Namespace: "AWS/SQS",

C|0waatCh Dimensions: [
Alarm {

Name: "QueueName",
Value: { "Fn::GetAtt": [stringLike("DLQ*"), "QueueName"] 3}

3

@aws-cdk/assertions

(screenshots still from @aws-cdk/assert)],
\ 4 /
‘L'\-

test('dlg has maximum retention period', () => {
const stack = new Stack();

new DeadLetterQueue(stack, 'DLQ');

expect(stack).toHaveResource('AWS::SQS: :Queue', {
MessageRetentionPeriod: 1209660
3);
3;

https://aws.amazon.com/blogs/developer
[testing-cdk-applications-in-any-language

AWS Developer Tools Blog

esting CDK Applications in Any Language
by Thomas Ross | on 09 NOV 2021 | in Announcements, AWS Cloud Development Kit, Intermediate (200), Java, JavaScript, Open Source

Python | Permalink | #® Comments | # Share

The AWS Cloud Development Kit (AWS CDK) is an open source software development framework to define your cloud
application resources using familiar programming languages. Because the AWS CDK enables you to define your
infrastructure in regular programming languages, you can also write automated unit tests for your infrastructure code,
just like you do for your application code. Testing is an essential element to highly effective DevOps practices, and testing
your infrastructure code provides benefits such as ensuring that you will create exactly the resources you expect in the
AWS cloud and helping to prevent regressions from being introduced to your infrastructure.

Today, | am happy to announce the assertions module for the AWS Cloud Development Kit, a set of APIs designed to help
you write unit tests against your CDK applications, with a focus on CloudFormation templates.

Cross-Language Support

A previous AWS blog post explains how to write tests for your infrastructure constructs using the assert module,

which is available only for JavaScript and TypeScript.

Similar to the assert module, the new CDK assertions module provides a robust set of APIs to precisely verify the
CloudFormation templates synthesized by your CDK app. Additionally, the assertions module is available for every

language supported by the CDK.

While the new assertions module supports every language that is supported by the CDK, this snippets in this article will
be written in Python. However, the full source code for these examples is available on GitHub, and contains equivalent
code written in TypeScript, Java, and Python.

AWS Lambda AWS CDK

Il tampere-serverless-stackis M @

lib > B tampere-serverless-stack.ts > 4 TampereServerlessStack > &) constructor

i import * as cdk from '@daws-cdk/core';
import { NodejsFunction } from '@aws-cdk/aws-lambda-nodejs';

export class TampereServerlessStack extends cdk.Stack {
constructor(scope: cdk.Construct, id: string, props?: cdk.StackProps) {

super(scope, id, props);

new NodejsFunction(this, 'HelloFunc');

2
5
4
5
6
7
8
9

T
o)

Il tampere-serverless-stack.ts M X

lib > M tampere-serverless-stack.ts > 43 TampereServerlessStack > & constructor
1 import * as cdk from '@aws-cdk/core';
import * as lambda from '@aws-cdk/aws-lambda';
import { NodejsFunction } from '@daws-cdk/aws-lambda-nodejs';

export class TampereServerlessStack extends cdk.Stack {
constructor(scope: cdk.Construct, id: string, props?: cdk.StackProps)
super(scope, id, props);

2
3
4
5
6
7
8
9

new NodejsFunction(this, 'HelloFunc', {
entry: './lib/functions/hello/index.ts',
architecture: lambda.Architecture.ARM_64,

});

e
V1A WN RO

CDK Application

E Constructs
&0 B

SIS Lambda DynamoDB
Topic Function Table

executes (\‘j synthesize

CDK CLI
npx cdk <command>

Cloud Assembly

o\ Toolkit bucket
E‘ (assets)

CloudFormation
Service

TERMINAL

v TERMINAL

-+ tampere-serverless git:(main) x time npx cdk deploy --profile admin@poc2

Bundling asset TampereServerlessStack/HelloFunc/Code/Stacge...

cdk.out/bundling-temp-517a5e69505c065d8de5232¢58591caald6e439061c01f7ff292753deacd2641/index. js

526b

s Done in 3ms
TampereServerlessStack: deploying...

[0%] start: Publishing 8699d04061faede8a74a87db12480e416a8462644e910dcd4al7lefed446d9253a:current

[100%] success: Published 8699d04061faede8a74a87db12480e416a8462644e910dc4al7lefed446d9253a:current
TampereServerlessStack: creating CloudFormation changeset...

8 TampereServerlessStack

Stack ARN:

arn:aws:cloudformation:eu-west-1: :stack/TampereServerlessStack/0a4a3970-4bf5-11ec-b90b-0a91ca217385

npx cdk deploy —--profile admin@dpoc2 4.44s user 0.72s system 7% cpu 1:09.78 total
-+ tampere-serverless git:(main) x I -

AN X

BlzsH ++v [0 @

https://aws.amazon.com/about-aws/whats-new/2021/10
Jaws-cdk-releases-hotswap-rollback-control/

AWS CDK releases v1.121.0 - v1.125.0 with features for
faster development cycles using hotswap deployments
and rollback control

Posted On: Oct 12, 2021

During September, 2021, 5 new versions of the AWS Cloud Development Kit (CDK) for JavaScript, TypeScript, Java, Python, .NET and
Go were released (v1.121.0 through v.125.0). With these releases, the CDK CLI now has support for hotswap deployments for faster
inner-loop development iterations on the application code in your CDK project. Hotswap initially supports AWS Lambda handler code,
but support is planned for additional resource types and a “watch” mode which continually watches for changes and deploys any
updates. Additionally, users can preserve successfully provisioned resources by disabling automatic stack rollbacks, further reducing
deployment and iteration time. These releases also resolve 21 issues and introduce 40 new features that span over 30 different

modules across the library. Many of these changes were contributed by the developer community.

The AWS CDK is a software development framework for defining cloud applications using familiar programming languages. The AWS
CDK simplifies cloud development on AWS by hiding infrastructure and application complexity behind intent-based, object-oriented

APIs for each AWS service.

To get started, see the following resources:

* Read the full release notes for 1.121.0, 1.122.0, 1.123.0, 1.124.0, 1.125.0

* Get started with the AWS CDK in all supported languages by taking CDK Workshop.

* Read our Developer Guide and API Reference.

» Find useful constructs published by AWS, partners and the community in Construct Hub.
e Connect with the community in the cdk.dev Slack workspace.

» Follow our Contribution Guide to learn how to contribute fixes and features to the CDK.

CDK Application

——
Stack

E Constructs
&0 B

SIS Lambda DynamoDB
Topic Function Table

executes {-\‘5 synthesize

CDK CLI
npx cdk <command>

Cloud Assembly

publish

> ~

Toolkit bucket
(assets)

Service

TERMINAL

v TERMINAL

S e ®™ .-

-+ tampere-serverless git:(main) x time npx cdk deploy --profile adminapoczr——hotswap
Bundling asset TampereServerlessStack/HelloFunc/Code/Stage... TEesse-

cdk.out/bundling-temp-517a5e69505c065d8de5232¢c58591caald6e439061c01f7ff292753deacd2641/index.js 525b

Done in 2ms
A The --hotswap flag deliberately introduces CloudFormation drift to speed up deployments
A It should only be used for development - never use it for your production Stacks!
TampereServerlessStack: deploying...

@ TampereServerlessStack (no changes)

Stack ARN:
arn:aws:cloudformation:eu-west-1: :stack/TampereServerlessStack/0a4a3970-4bf5-11ec-b90b-0a91ca217385

npx cdk deploy —--profile admin@poc2 --hotswap 3.83s user 0.60s system 80% cpu 5.479 total
» tampere-serverless git:(main) x D - = -

https://aws.amazon.com/blogs/compute
/better-together-aws-sam-and-aws-cdk/

sam local invoke

The first test is to invoke the PutTranslationFunction locally. | created a mock event for each Lambda function. These

events are located in the events directory. Run this command passing in the mock event and the local environment file:

Bash
sam-beta-cdk local invoke CdkDayStack/PutTranslationFunction -e events/putTranslation.jsor

sam-beta-cdk local invoke CdkDayStack/PutTranslationFunction -e \
events/putTranslation.json -n locals.json

Invoking app.handler (nodejsl4.x)
Skip pulling image and use local one: amazon/aws-sam-cli-emulation-image-
nodejsl4.x:rapid-1.22.0.

Mounting /home/ec2-user/environment/cdk-day/.aws-
sam/build/asset.363846a1c45bf575171f04c26793190b7f2¢cf1183336a98ec07140326¢31d747
as /var/task:ro,delegated inside runtime container

END RequestId: b5747b2b-84db-495b-b3b8-750e7c0f8062

REPORT RequestId: b5747b2b-84db-495b-b3b8-750e7c0f8062 Init Duration: 1.81 ms
Duration: 491.13 ms Billed Duration: 500 ms Memory Size: 128 MB

Max Memory Used: 128 MB

{
edE12345%"
“Items":[
{"language":"hi","translation":"qg W 9 8","1d":"12345"},
{"language":"de","translation":"Das ist mein Text","id":"12345"},
{"language":"fr","translation":"C'est mon texte","id":"12345"},
{"language":"en","translation":"This is my text","id":"12345"}

“Traditional” Local
Lambda Development

\\

l.e.

Often seen with tools such as:
« SAMCLI (local invoke)

lambci/docker-lambda

Modify code

Execute

See output

Fast Feedback loop

npx jest Lambda.MyFunction

RUNAN.. [> Attach by Proce: vs|

B indexts X DR AR TR R S (I TERMINAL ~ PROBLE

> {body: 'eyJeZ)&teoivm9keSJ9', resource: '/{proxy+}', path: '/path/té];esource', httpMethod: 'POST..
body: 'ey]@ZXNOIjoiYmIkeSI9'
_event$queryStringPar: I > headers: {Accept: 'text/htm slication/xhtml+xml, cation/xml;q=0.9, /webp , */ .8", Accept
_event$queryStringPar2: unde d httpMethod: 'POST'
m applicationId: unde : isBase64Encoded: : o) ; ~ N .
> multiValueHeaders: {Accept: Array(1l), Accept Array(1), Ac rt-Lar - , Cache-Cont
e U e r gato e > multiValueQueryStringParameters: Id: Array(l), applicationId: Array(
% event: {bod) yJOZXNO Ym9keSJ9' path: '/path/to/resource’
userId: 'foo' > pathParameters: /pat source'}
this: > queryStringParameters: {use 'foo', ¢
> requestContext: {accountId: '12345678901 'prod', requestld: 'c6af9acé
resource: '/{proxy+}'
’ > stageVariables: {baz: 'qux'}
> async function proce S __proto__: Ob

: APIGatewayE

Attach a real debugger for your test runs L

const userId = event.queryStringParameters?.["userId"];

(D) const applicationId = event. queryStringParameters?.["applicationId"];
v
o3 RUNNING
RUNNING
7 RUNNING
& RUNNING
& PAUSED ON BREAKPOINT
| |
>
v

BEsREN

Mock AWS services

3lA047Z)

When developing locally —i.e. unit testing locally.

Fast feedback cycle
Test error scenarios with downstream services

Mocking AWS with Jest (and
TypeScript)
avs

‘ Matt Morgan Sep 1, 2020 - Updated on Mar 3 + 13 min read

This seems like a very punny subject, mocking the world's leading cloud
provider. | tried to think of a few chuckles, but then | got to thinking about
writing blogposts for free to promote the projects of companies that are
worth hundreds of billions of dollars, and maybe the joke is just on me?

Anyway, no need to think on that one too much. | like working with these
tools a lot and | like sharing the ways I've found to use them together. Some
readers may think Jest is a lot like some of the other JavaScript/NodeJS
testing frameworks, but it has a few features that | really think set it apart
from anything else I've used. One of them is that it ships with a very powerful
mocking capability. That is the subject of this article. The other features | like
about Jest are snapshots and test tables, but they will need to be covered
another time.

Table of Contents

e The Road to Mocking
Mocking AWS
DynamoDB Mock
Import Paths
Returning Data
Mocking Errors

Test Data Persistence
TypeScript

Next Steps

Building assets with Docker

/building-lambda-functions-inside-docker-containers-with-cdk/

new lambda.Function(this, "MyFunc", {
runtime: lambda.Runtime.GO_1_X,
handler: "bin/main",
code: lambda.Code.fromAsset("path/to/my-func", {
bundling: {
// Speficy Docker image:
image: lambda.Runtime.GO_1_X.bundlingDockerImage,
// The build command to be executed within the Docker container:
command: [
'bash', '-c¢', [
“cd /asset-input’,
“go build -o bin/main”,
“cp /asset-input/bin/main /asset-output/bin”,
J1.join(" && ')
1,
user: 'root’,
1,
// Glob(s) to exclude from deployment package:
// In most cases with Go, only the binary is needed (unless you depend on external files)
exclude: ["!bin"],

D,

Unit tests & mocking...? What about testing real systems?

Unit tests & mocking...? What about testing real systems?

! tampere-serverless-stackts M @ W M

tampere-serverless-stack.ts — tampere-serverless

TERMINAL AN X

lib > B tampere-serverless-stack.ts > %3 TampereServerlessStack > @ constructor > /2 vi v TERMINAL zsH ++v [w

1

O 00 ~NO VT & WN

NNNNRRRRPRRERRRR
WNRPRGGOOOWNOWMAMWNERO®

import * as cdk from '@aws-cdk/core';
import * as lambda from '@aws-cdk/aws-lambda';
import { NodejsFunction } from '@aws-cdk/aws-lambda-nod

export class TampereServerlessStack extends cdk.Stack {
constructor(scope: cdk.Construct, id: string, props->?:
super(scope, id, props);

const fn = new NodejsFunction(this, 'HelloFunc', {
entry: './lib/functions/hello/index.ts',
architecture: lambda.Architecture.ARM_64,
W)k
’o--_‘-----—---—
0 new cdk.CfnOutput(this, 'FnArn', {
] value: fn.functionArn,
1 H;
]
| new cdk.Cfnoutput(this, 'Hello', {
\ value: 'world',

}

@® ®OAO0 #&LiveShare AWS £ Select Postgres Server

v The ——-hotswap flag deliberately introduces CloudFormation drift to speed up deployments
It should only be used for development - never use it for your production Stacks!

» tampere-serverless git:(main) x npx cdk deploy --profile adminapoc2

Bundling asset TampereServerlessStack/HelloFunc/Code/Stasge...

...mp-517a5e69505c065d8de5232c58591caald6e439061c01f7ff292753deacd2641/index.js 526b

s Done in 2ms

TampereServerlessStack: deploying...

[0%] start: Publishing 8699d04061faede8a74a87db12480e416a8462644e910dc4al7lefed446d9253a:current
[100%] success: Published 8699d04061faede8a74a87db12480e416a8462644e910dc4al7lefe446d9253a:current
TampereServerlessStack: creating CloudFormation changeset...

@ TampereServerlessStack
S Er e ® D omeo O oMooaooaeoomae PO ae e T O erTToee O DT oM S amame N
Outputs: \
TampereServerlessStack.FnArn = arn:aws:lambda:eu-west-1: :function:TampereServerlessStad]
k-HelloFunc65F95DBE-S05y1LphWoyZ]
TampereServerlessStack.Hello = Wor'ld]

----‘---—----——--‘-----_—-------~——------_I
Stack ARN:
arn:aws:cloudformation:eu-west-1: :stack/TampereServerlessStack/0a4a3970-4bf5-11ec-b90b-
0a91ca217385
-+ tampere-serverless git:(main) «x I

> DEBUG CONSOLE
> PROBLEMS
Ln15,Col17 Spaces:2 UTF-8 LF {} TypeScript Colorize: 0 variables @ Colorize Prettier &' [2

cdk-outputs.json — tampere-serverless

M tampere-serverless-stackts M @ © cdk-outputs.json X Tf}, m --- TERMINAL A X

son > TERMINAL zsH ++ [0 W
{

f—--—--‘-~-----
"TampereServerlessStack": { » tampere-serverless git:(main) x npx cdk deploy --profile admin@poc2 ¥-outputs-file ./cdk—outputs.jsonl'
"Hello": "world", S a e megy,® T memeomo

"FnArn": "arn:aws:lambda:eu-west-1: mum

1
2
3
4
5
(¢}
7
-

ey T By ™ P e ™y o™ P ame ™ mgy =

> DEBUG CONSOLE
> PROBLEMS
@® ®OAO0 #&LiveShare AWS £ Select Postgres Server Ln7 Col1 Spaces:2 UTF-8 LF JSON Colorize: O variables (@) Colorize Prettier &' [2

Infrastructure End-to-End

AWS SDK

EventBridge

Send Event EventBus

+ verify

DynamoDB

Getltem Table

+ verify

— 4 > \L Got

\) API Gateway
) REST EndPoint

5 — QyeryAPl —»]|
+ verify

Infrastructure End-to-End

@ Jest

index.e2e.test.ts (PHINENS)

End-to-End

v
— 1 > AWS SDK

v
v
v

S, EventBridge

Send Event <__\
+ verify ’// EventBus

Test Suites: 3 skipped, 1 passed, 1 of 4 total
Tests: 13 skipped, 4 passed, 17 total
Snapshots: 0 total

Getltem DynamoDB Time: 10.596 s, estimated 71 s

+ verify Table "End-to-End"

— 4 »CDT 6ot

. NN\ APIGateway
5 dery_API —> \\J |/) REST EndPoint
+ verify

Lint all your code

Test your CDK code

Test your (Lambda) Runtime Application code (and mock external services such as AWS)

Run integration / end-to-end test against a real system in AWS

Product X

account

preproduction
pre-environment (optional)

N HE ®

production
environment

NEOEe
R

prestaging
pre-environment (optional)

A Bl &)

preview/ABC123

environment (optional)
NG HE D m.o
ocsoifiillo &

staging
environment

NG W S
& .0@

preview/DEF456

environment (optional)

m.o

Multiple environments enable deploy pipelines

Deploy with confidence

Install
dependencies

Test Deploy
locally prestaging

\4

Lint all your code
Test your CDK code

Test your (Lambda)
Runtime Application code
(and mock external services
such as AWS)

Verify Deploy
prestaging preproduction

Run integration / end-to-end test against a real system in AWS

Verify
preproduction

Deploy
production

Verify
production

24.11.2021 83

@ vs Others?

E’)

AWS CloudFormation

HashiCorp Terraform

&

AWS SAM Serverless Framework AWS CDK

CDK for TF

@ Future?

https://aws.amazon.com/blogs/developer
/announcing-aws-cloud-development-kit-v2-developer-preview/

AWS Developer Tools Blog

Announcmg AWS Cloud Development K|t v2 Developer Preview

by Chris Fife, Eric Z. Beard, Rico Huijbers, Neta Nir, Niranjan Jayakar, and Otavio Macedo | on 30 APR 2021 | in .NET, Announcements, AWS
Cloud Development Kit, Developer Tools, DevOps Java, JavaScript, Open Source, Python | Permalink | # Comments | @ Share

The AWS Cloud Development Kit (AWS CDK) v2 is now available for Developer Preview in TypeScript, Python, Java, C#,
and Go. The AWS CDK is an open-source software development framework to model and provision your cloud application
resources using familiar programming languages. With the AWS CDK, you can define your infrastructure as code and
provision it through AWS CloudFormation. AWS CDK provides high-level components that preconfigure cloud resources
with proven defaults, so you can build cloud applications without needing to be an expert. It also enables you to
compose and share your own custom components that incorporate your organization's requirements, which helps teams
start new projects faster.

In July of 2019, we announced the general availability of AWS CDK v1 for Typescript and Python. Since that time, we
have released support for additional languages in Java and C#, and we released language bindings for Go in Developer
Preview. We're now announcing a preview release of v2, which introduces a couple of changes that make it easier for you
to consume the AWS CDK and stay up to date with new versions as we evolve it going forwards.

Migrating from the latest minor version of an AWS CDK v1 application to v2 is relatively painless. You need to start by re-
bootstrapping your AWS accounts, which is a one-time action. Then for most projects, all you need to do is update your
import statements, synthesize, and deploy. You may notice some minor changes to resources, but nothing that requires a
resource replacement.

npm 1 —-D aws-cdk-11b

https://aws.amazon.com/blogs/developer
/experimental-construct-libraries-are-now-available-in-aws-cdk-v2/

AWS Developer Tools Blog

Experimental construct libraries are now available in AWS CDK v2

1

NOV 2021 | in Announcements, AWS Cloud Development Kit, Infrastructure & Automation,

by Alex Pulver and Nick Lynch | on 0¢

Intermediate (200), Open Source | Permalink | #® Comments | # Share

The AWS CDK v2 experimental APIs are now available as separate packages, in addition to the existing stable APIs.

The AWS Cloud Development Kit (AWS CDK) is an open-source software development framework to model and provision
your cloud application resources using familiar programming languages. With the AWS CDK, you can define your
infrastructure as code and provision it through AWS CloudFormation. AWS CDK provides high-level components that
preconfigure cloud resources with proven defaults, so you can build cloud applications without needing to be an expert.
It also enables you to compose and share your own custom components that incorporate your organization's
requirements, which helps teams start new projects faster.

In April of 2021, we announced the developer preview of AWS CDK v2. In AWS CDK v1, we partitioned the AWS Construct
Library into many small packages, roughly one per service, so that you only needed to download the packages for those
services you wanted to use.

The downside of this approach was that every time you wanted to add a new AWS service to your application, you had to
go back to your terminal to npm install or pip install another package. Additionally, it was very important

that all these packages were on the exact same version to avoid interoperability issues.

Based on customer feedback about the v1 package experience, we have consolidated all of the stable AWS Construct
Libraries into a single package, called aws-cdk-11ib . You get access to all the stable AWS CDK constructs by installing

this package, and third-party construct libraries only need to take a dependency on this package as well.

We also introduced changes to how we handle experimental classes, methods, and properties. In v1, we followed
semantic versioning for all non-experimental code, but where APIs were marked as experimental, we reserved the right to
make breaking changes when we felt that the APIs could be improved significantly. Although this gave us the benefit of
easily adapting the APIs, customers were sometimes caught off guard by the changes when they didn’t notice the
experimental banner on a module. Existing tools don't provide a way to clearly identify specific modules as experimental,
in a way that works across all of the AWS CDK supported runtime languages. In v2, we strictly follow Semantic Versioning
and no longer make breaking changes to any APIs in minor version releases. Instead, we introduced a new lifecycle in
which new, experimental construct libraries go through an incubation period as a library completely independent from
the main aws-cdk-1ib library.

—--——-----\
CDK v2.0 '

Updated 5 days ago ‘
e SO s e e g ® T e

5: Shapes & Packaging

= Shapes & Packaging
COMPLETE

Tasks related to how CDK modules are
packaged and released publicly to

1 6: DevPreview

= Dev Preview
COMPLETE

Work required to get our first developer
review or release candidate

8 7: Upgrade Experience

& Upgrade Experience

NOT STARTED

Customer experience when they upgrade
from CDKv1 to CDKv2

16 8: Final Release Candidate

= Final Release Candidate

NOT STARTED

Tracks work we identify during RC phase
that needs to be complete before GA

5 9:v2in

= Menu

CDK v2.0 #10

the RFC-79

& Sumr

Descriy O Activity

Work pertaining to the release of CDK v2.0, per

--—-----—\

Status:. @ @nija-at closed the project

5 days ago
Total ef -
- b a» a» " an gp - a»

Remain
customers. ; ; -
ETA: @ @njlynch removed GPL licensing

Completed on: Apr 30, 2021 ETA: TBD ETA: ' on 9 Sep

Completed on: Apr 23, 2021 = = < Added k&
Added by nija-at Added by nija-at Added by nija-at

6 days ago

v2.0.0-rc.30

4 \ .
&S aws-cdk-automation

© v2.0.0-rc.30

—--——-----\
CDK v2.0 '

Updated 5 days ago ‘
e S s e ey ® T -

1 5: Shapes & Packaging

= Shapes & Packaging
COMPLETE

Tasks related to how CDK modules are
packaged and released publicly to
customers.

Completed on: Apr 23, 2021

6 days ago

1 6: DevPreview

= Dev Preview
COMPLETE

Work required to get our first developer
review or release candidate

Completed on: Apr 30, 2021

Added by nija-at

8 7: Upgrade Experience

& Upgrade Experience
NOT STARTED

Customer experience when they upgrade
from CDKv1 to CDKv2

ETA: TBD

Added by nija-at

16 8: Final Release Candidate

= Final Release Candidate
NOT STARTED

Tracks work we identify during RC phase
that needs to be complete before GA

ETA:

Added by nija-at

5 9:v2in

= Sumr
Descrif

Total ef
Remain

ETA:

Added b

= Menu

CDK v2.0 #10

Work pertaining to the release of CDK v2.0, per

the RFC-79

O Activity

S eap ar > ab a» " a» o LY
Status:. @ @nija-at closed the project

5 days ago
e SO s ep e gn @ ™ D e

@ @njlynch removed GPL licensing

on 9 Sep

v2.0.0-rc.30

- >
=% aws-cdk-automation

O v2.0.0-rc.30

WELCOME

AWS

e lnven

NOVE2S=DEC. 3, 2021 | LAS VEGAS, NV

CELEBRATING 10 YEARS OF RE:INVENT

. ° o Al :
@aripalo IN /in/aripalo w‘ww aripalo.com

V74

@almadevelopers w almamedia.dev

